
The experimental humanoid robot H7:
a research platform for autonomous behaviour

BY KOICHI NISHIWAKI
1,*, JAMES KUFFNER

2,1, SATOSHI KAGAMI
1,3,

MASAYUKI INABA
3

AND HIROCHIKA INOUE
1

1Digital Human Research Center, National Institute of Advanced Industrial
Science and Technology (AIST), 2-41-6, Aomi, Koto-ku,

Tokyo 136-0064, Japan
2The Robotics Institute, Carnegie Melon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213, USA
3Graduate School of Information Science and Technology, The University

of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8856, Japan

This paper gives an overview of the humanoid robot ‘H7’, which was developed over
several years as an experimental platform for walking, autonomous behaviour and
human interaction research at the University of Tokyo. H7 was designed to be a human-
sized robot capable of operating autonomously in indoor environments designed for
humans. The hardware is relatively simple to operate and conduct research on,
particularly with respect to the hierarchical design of its control architecture. We
describe the overall design goals and methodology, along with a summary of its online
walking capabilities, autonomous vision-based behaviours and automatic motion
planning. We show experimental results obtained by implementations running within
a simulation environment as well as on the actual robot hardware.

Keywords: humanoid robot; autonomous behaviour; biped locomotion;
motion planning; vision-based control
On

*A
1. Introduction

The recent rapid progress in the development of commercial prototype humanoid
robots around the world has stimulated a renewed interest in biped walking
control, robot–human interaction and artificial intelligence research. However,
owing to the limited availability, high cost and proprietary nature of most
humanoids, the ability to conduct advanced research in these areas is difficult.
This is particularly true for academics in a university setting.

This paper summarizes a multi-year project to develop the humanoid robot ‘H7’
as a research platform for experimental robotics. The overall goal was to provide a
research test bed for investigating perception–action coupling and intelligent
behaviours. Some of the key design components of H7 include: (i) a full-size
body with sufficient degrees of freedom (d.f.) and joint torque for whole-body
Phil. Trans. R. Soc. A (2007) 365, 79–107

doi:10.1098/rsta.2006.1921
Published online 17 November 2006
e contribution of 15 to a Theme Issue ‘Walking machines’.

uthor for correspondence (k.nishiwaki@aist.go.jp).

79 q 2006 The Royal Society

K. Nishiwaki et al.80
motions, (ii) standard PC/AT compatible high-performance on-board processing,
(iii) RT-LINUX operating system for realizing simultaneous low-level and high-
level control, (iv) a self-contained system design with on-board power and wireless
communication capabilities, and (v) dynamic walking trajectory generation,
motion planning and three-dimensional vision functions for implementing
complex behaviours.

The rest of the article is organized as follows: §2 gives an overview of the
hardware design and software architecture of H7; §3 provides details regarding
the online walking control system; §4 contains an overview of the various
autonomous motion planning functions; §5 shows some autonomous behaviour
experiments realized on H7; and §6 concludes with a summary discussion.
2. Hardware design and software architecture

In selecting the design for H7, we considered a number of desirable
characteristics for a research platform for autonomous whole-body behaviour.
The primary design characteristics we focused on include the following.

—A human-sized mechanism with sufficient d.f., joint power (torque and speed)
and joint motion range for a variety of whole-body motions.

—The ability of parts other than the sole to contact the environment without
damaging itself or the environment.

—Visual sensors and distributed tactile sensors for perceiving the surrounding
environment.

—High-performance computing resources for environment recognition, dynamic
trajectory generation and motion planning.

The motivation for these design choices are based on both practical need and
our experience developing earlier prototype humanoids. In particular, H7 is a
revised and improved version of the H6 humanoid robot (Nishiwaki et al. 2000),
which has a similar joint structure and d.f. arrangement. The motor power
specifications for H7 were designed to be sufficient for walking as well as standing
up from a prone position. Based on the knowledge obtained from the experiments
with H6, the motor drivers were newly designed and the selection of motor and
gear ratios for H7 was tuned. The outward appearance consists of links with a
smooth surface shape that almost entirely encases the actuators, electronics,
power supply and wiring. The smooth external geometry is also advantageous for
covering the entire body surface with dense tactile sensing elements, such as the
various ‘artificial skin’ prototypes currently under development. PC/AT
compatible computer hardware was adopted to provide a standard high-
performance computing platform and mounted directly inside the torso. A
built-in wireless LAN system and onboard batteries enable the robot to be
operated completely without any external cables, which is important for
conducting experiments in both general and complex environments. Head-
mounted stereo cameras, six-axis force sensors and a gyroscope sensor are the
main components of the perception subsystem.
Phil. Trans. R. Soc. A (2007)

(a) (c)(b)

Figure 1. Humanoid robot H7. (a) Simulation snapshot, (b) photograph and (c) mechanism design.

81Humanoid robot H7
(a) Specifications

H7 is 1468 mm tall and is 57 kg. It has a total of 30 d.f.: seven for each leg
including a 1 d.f. toe joint, seven for each arm including a 1 d.f. gripper and two
at the neck (figure 1).

The computing hardware consists of a CPU board with PICMG connector
(dual Pentium III 1.4 GHz) mounted inside the torso, and an IEEE 1394
communication board for image capture, a sound board, and I/O boards with
D/A converters, A/D converters and pulse counters, all connected to the CPU
board via the PCI and ISA bus.

Onboard power is supplied by four lead-acid batteries (12 V, 2.0 Ah) weighing
0.86 kg each, which are mounted inside the torso. Optional Ni-MH battery
modules can also be attached to the back (6 kg, 48 V, 6 Ah is the maximum).

A tiny IEEE 802.11b wireless station (58 mm (w) !82 mm (d) !22 mm (h),
110 g) is mounted inside the head. The head is also outfitted with a high-
resolution stereo camera module with an IEEE 1394 interface (Videre Mega-D:
1280!1024 pixels, with a field of view of approximately 908).

Thin and light 6-axis force sensors that we developed specifically for measuring
ground reaction forces (Nishiwaki et al. 2002) are installed in the feet.
Additionally, a gyroscope sensor that outputs three-dimensional attitude and
three-dimensional translational acceleration is mounted inside the torso.

(b) Software architecture

We adopted a centralized system in order to construct a platform where we
can easily develop and debug perception–action coupling control schemes. All of
the sensor data, such as actuator encoder values, reaction forces and camera
images, are directly available to the PC. Control commands are sent from the PC
to the motor drivers directly. This requires an operating system in which many
different cycle control loops can be executed concurrently (from 1 ms servo loop
to higher level trajectory generation and motion planning loop, which have cycle
times of several seconds). We adopted RT-LINUX (Barabanov 1997; LINUX KERNEL

2.2.18C RT-LINUX 3.0), which is a real-time extension of LINUX that can execute
1 ms cycle loops accurately. Since it is based on a LINUX core, it is highly suitable
Phil. Trans. R. Soc. A (2007)

6-axis force
sensor output
viewer

robot
posture
viewer

realtime application
modules

force sensors
on hands

6-axis force
sensors

internal
voltage

incremental
encoders

motor
drivers

gyro
sensor

stereo
camera

micro-
phone speaker

IEEE
1394
driver

audio
driver

I/O, motor servo module serial
driver

attitude
calculator

rtmodel
reader

inverse
dynamics
library

inverse
kinematics
library

rtfifo manager data output
moduletrajectory

manager

walking pattern generation
balance compensation,

model
reader

data
logger

robot state
socket server

image
capture
library

kernel space

user space

hardware

R
T-

L
IN

U
X

no
rm

al
 k

er
ne

l

speech
synthesis
library

speech
recognition
library

non-realtime application
processes

user interface
by EUSLISP

outside PC

executed over
telnet connection

network computer
application processes

joystick server, high level
vision processing,

Figure 2. Overview of the software architecture for H7.

K. Nishiwaki et al.82
as a research platform owing to the wide availability of high-quality, open-source
development tools and libraries. All basic operating system functions (file
system, networking, etc.) become standard, and it is relatively easy to add new
hardware support by writing a custom device driver.

Figure 2 illustrates the overall design of the software architecture. The system
consists of real-time modules and user-space programs. Control loops that require
accurate execution cycles are implemented as real-time kernel modules, such as the
motor servo loop and the online walking control system. Programs and processes
that operate over longer control cycles, such as vision processing and motion
planning loops, are implemented as user-space program. User-space programs are
easier to develop compared with kernel modules and are readily interfaced to the
EUSLISP (Matsui & Inaba 1990) system which several of our modules used.
3. Online walking control system

This section provides an overview of a humanoid walking control system that
generates body trajectories to follow a given desired motion online. A layered
software and control architecture is used to aggregate system components and
Phil. Trans. R. Soc. A (2007)

trajectory modification

trajectory generation

motor servo

gait decision

path planning

posture

posture sequence

gaits

path

global map

local map

dynamics,
kinematics model

ground reaction force,
torso absolute posture

current angle

motor current

destination
(mainly used information)

Figure 3. Example of a layered structure for online walking control.

83Humanoid robot H7
provides a framework for high-level autonomous locomotion behaviours. Walking
characteristics such as desired torso movements, upper body posture and step
cycles, can be specified and used to generate stable whole-body walking
trajectories online. The basic architecture consists of four layers: footstep
decision; trajectory generation; trajectory modification from sensor feedback; and
joint servo control.
(a) Layered control approach

The ultimate goal of autonomous locomotion is to enable a robot to navigate
to a destination point automatically by acquiring information about the
environment and planning a suitable motion to reach the goal. In order to
achieve this autonomy, many techniques are required, such as environment map
generation, localization, path planning, gait planning, reactive avoidance of
obstacles, dynamic stabilization control and motor servo control. These processes
must operate online concurrently, despite the fact that they have different
control cycles that depend on the calculation time and update cycles of the
incoming sensory information.

In order to accommodate these design constraints, we developed a hierarchical
architecture that consists of layers of different control cycles. An example of a
layered architecture for autonomous walking is shown in figure 3. In this
architecture, the processed result of one layer communicates the control value to
the next (lower) layer, with higher layers usually having slower control
frequencies. Four layers starting from the top are described in this section,
including motor servo, trajectory modification, trajectory generation and gait
planning. Our implementation enables online walking control that satisfies a
given robot translation and rotation with arbitrary upper body posture and
step cycles.
Phil. Trans. R. Soc. A (2007)

Figure 4. Footstep location selection by transforming desired torso movements into movements of
the swing leg foot.

K. Nishiwaki et al.84
(b) Gait and footstep location selection

During walking, the movement of the torso is roughly half of that of the
swing leg foot on average. Thus, a simple way to decide target footstep
locations on level ground is to make the movement of the foot twice the desired
torso motion in one step. However, in our experiments, this method turned out
to generate unnatural and inefficient footstep locations in many cases (see
figure 4 for examples).

We propose a method that calculates footstep landing positions relative to the
foot of the supporting leg, given the desired torso movement. Figure 5 shows
landing positions calculated in a coordinate system whose origin is fixed at the
foot of the supporting leg.

Let the desired torso motion in one step be (x, y, q), where x is the forward
offset; y is the lateral offset; and q is the counterclockwise orientation. The
landing position is calculated as follows: (x, 2yCw, q) for the left foot swing leg
and (x, 2yKw, q) for the right foot. Here, the x-axis is aligned with the forward
direction of the supporting leg foot and w is the normal distance of the feet in the
lateral direction. Figure 5 shows some examples of generated footprints using this
method. Figure 5a shows an example where the torso of the robot moves forward
a distance a in one step. Figure 5b shows an example of the torso rotating by the
angle b, but maintaining a fixed position on average. Here, k is the coefficient that
increases the minimum distance between the two feet in proportion to the
rotation angle to avoid collisions between the legs. In figure 5c, the geometrical
constraint that prevents the feet from crossing each other sideways results in a
maximal torso motion of c/2 in the lateral direction. Therefore, the calculated
landing position is doubled only for the lateral component. Figure 5d–g shows
Phil. Trans. R. Soc. A (2007)

left foot

right foot

(a, w, 0)

(a
, –

w, 0
)

x

y

x

y

x

y

(a
, –

w, 0
) x

y

(a, w, 0)

i th

i+1th

i+2th

i–1th

i+3th

left footright foot

(0, w+c, 0)

(0, –w, 0)(0, –w, 0)

i–1th

ith

i+1th

(0, w+c, 0)

i+2th

(0, –w, 0)

i+3th

i+4 th

left foot

(0, –w–|kb|, b)

x

y

x
y

(0, w+|kb|, b)

x

y

x

y

x
y

i–1th

ith

i+1th

i+2th

i+3th

forward step: (a, 0, 0)

rotational step: (0, 0, b)

sideward step: (0, c/2, 0)

right foot

left footright foot

x

y

x

y

x

y
(a, w, 0)

1st
step

2nd
step

x

y

x

y

x

y

3rd
step

4th
step

x

y

5th
step

left footright foot

x

y
x

y
x

y

(a, 2b+w, 0)

1st
step

x

y

x

y

y

4th
step

(a, –w, 0
)

2nd
step

x

y

3rd
step

5th
step

x

y

6th
step

x

y

7th
step

left foot

right foot

x

y

x

y

x

y

(a, w, 0)

1st
step

(a, –
w, 0

)
2nd
step

x

y

x

y

x

y

(0, –w, 0)

3rd
step

4th
step

5th
step

(0, 2b+w, 0)
x

y

x

y

6th
step

7th
step

x

y

x
y

right foot left foot

y

x

y

x

y

x

y

x
y

y

x
y

(a, w+kc, c)

1st
step

2nd
step 3rd

step

4th
step

5th
step

6th
step

(a, –w
, 0)

forward

forward left forward forward turn forward forward leftward

(a
, –

w, 0
)

(a, w, 0)

(a
, –

w, 0
)

(a, w, 0)

(a, 2b+w, 0)

(a
’,
–w, 0

)

(a’, w, 0)

(a’, w, 0)

(a
,–w

–k
c,c

)

(a, w+kc, c)

(a, w, 0)

(a, –w
, 0)

(0, –w, 0)

(0, 2b+w, 0)(0, 2b+w, 0)

(a
’,
–w, 0

)
x

x

x

(a) (b) (d)

(e) (f)

(c)

(g)

Figure 5. Footstep location selection by transforming desired torso movements into landing
positions of the swing leg foot relative to the support leg.

85Humanoid robot H7
generated footprints for the same torso motions as those given in figure 4. The
generated footprints satisfy the desired torso motion on average and satisfy
exactly when the same motion command is repeated for more than two steps.
(c) Generating dynamically stable walking trajectories

This section describes the method we developed for efficiently generating
dynamically stable walking trajectories. Specifically, we synthesize online
walking patterns based on the zero moment point (ZMP) as the stability
criteria. In general, the ZMP trajectory can be analytically derived from the
robot motion trajectory. However, synthesizing a robot walking trajectory that
satisfies a given ZMP trajectory analytically is difficult, due to the necessity of
Phil. Trans. R. Soc. A (2007)

x y

z

xp yp

O

r i–p

r i r i+1

i+1

G

m i–1,l i–1

r i–1

m i, l

m i+1 l

i

Figure 6. Coordinate system for calculating the ZMP.

K. Nishiwaki et al.86
solving complex nonlinear second-order differential equations with joint
constraints. We have developed an efficient walking trajectory generation
method that follows a given input ZMP trajectory. The key to our method is the
modification of the torso horizontal trajectory from a given initial trajectory.

Let the ith robot link position, mass, inertia tensor and angular velocity vector
be riZ(xi, yi, zi)

T, mi, Ii and ui, respectively. Let the x–y plane define the
walking surface and let the gravity vector G be the negative z -axis direction
(GZ(0,0,Kg)T) (figure 6). Let PZ(xp, yp, 0)

T denote the ZMP.
The x component of the ZMP can be calculated from the robot motion as

follows (the same for yp):

xp Z

P
mizi€x iK

P
fmið€z i CgÞxi Cð0; 1; 0ÞTI i _uig
K
P

mið€z i CgÞ : ð3:1Þ

Let the robot trajectory be denoted as follows:

AðtÞZ ðx1ðtÞ; y1ðtÞ; z1ðtÞ; q1ðtÞ;f1ðtÞ;j1ðtÞ;
.; xnðtÞ; ynðtÞ; znðtÞ; qnðtÞ;fnðtÞ;jnðtÞÞ: ð3:2Þ

The ZMP trajectory PAðtÞZðxpaðtÞ; ypaðtÞ; 0Þ
T can be solved using equation

(3.1). Now, consider the problem of generating a walking trajectory that follows a
desired ZMP P�

AðtÞ by only modifying xi(t), yi(t) in A(t) to x 0i ðtÞ; y 0
iðtÞ,

x�p Z

P
mizi€x

0
iK

P
fmið€z i CgÞx 0i Cð0; 1; 0ÞTI i _uig
K
P

mið€z i CgÞ : ð3:3Þ

This problem requires solving for x 0i that satisfies equation (3.3) (the same for y 0i).
From equations (3.1)–(3.3), we obtain the following equivalence:

xep Z

P
mizi€x

e
i K

P
mið€z i CgÞxei

K
P

mið€z i CgÞ : ð3:4Þ

Here, xepZx�pKxpa ; x
e
i Zx 0iKxi.
Phil. Trans. R. Soc. A (2007)

generation
execution

1st traj.

2nd traj.

3rd traj.

n–1th traj.

n th traj.

1 step

time

Figure 7. One-step cycle online pattern generation.

87Humanoid robot H7
Consider xei Zxe, i.e. modifying the horizontal position of every link by in same
distance. In reality, the feet position cannot be changed relative to the ground.
However, the upper body links can be shifted accordingly, up to the limit of the
kinematic constraints. Small modifications of the upper body position in the
horizontal plane yield proportionally small position changes of the leg links,
whose joint values are determined by inverse kinematics. The adjustment lies
predominantly in the horizontal plane, with relatively small rotational and
vertical components.

By setting xei Zxe to equation (3.4), the following equation is obtained:

K

P
miziP

mið€z i CgÞ €x
e Cxe Z xep : ð3:5Þ

In order to solve this numerically, time is discretized on the interval 0, ., tmwith
time-step Dt. The acceleration at each time €xeðtiÞ can be represented as follows:

€xeðtiÞZ
xeðtiC1ÞK2xeðtiÞCxeðtiK1Þ

Dt2
: ð3:6Þ

Then, equation (3.4) can be expressed as trinomial equations. Using the
boundary conditions xe(0), xe(tm)Z0, xe(i) (iZ1 to tmK1) can be obtained. The
result is a robot trajectory that satisfies the givenZMPtrajectoryP�

AðTÞ. In order to
obtain a more accurate trajectory, the calculated trajectory is set as the initial
trajectory and this procedure is repeated.

(d) Online walking trajectory generation

The walking trajectory generation layer is designed to generate stable
trajectories that satisfy desired footstep locations, upper body posture and step
cycle. Dynamic stability, self-collision and joint performance limitations are
considered using a simulation environment in this layer.

Trajectory generation is carried out once for every footstep resulting in a one-
step cycle time in this layer. During each cycle, although only a single-step
trajectory is absolutely necessary, our system calculates a walking trajectory of
three steps into the future. The first two steps are calculated to satisfy the
current desired motion, while the third step is used to bring the robot to a halt.
In the usual case, only the first step of this three-step trajectory is actually
executed by the robot. Instead, a new three-step trajectory is generated and
updated during the next cycle (figure 7). Although it may seem that two-thirds of
the calculation is wasted, there are key advantages to always executing a
trajectory that ends with a dynamically stable stopping motion. Namely, if the
Phil. Trans. R. Soc. A (2007)

Figure 8. Collision detection between the links of two legs (thighs, forelegs and toes are colliding in
the third posture).

K. Nishiwaki et al.88
calculation or update of the trajectory should fail during the next cycle for some
reason, the robot can always be safely brought to a halt simply by continuing to
execute the currently available trajectory.

In our system, trajectory generation for the next cycle begins 250 ms before the
end of the execution of the first step of the current trajectory. This value is
determined by the upper bound on the calculation time with some additional
margin. For a three-step stopping trajectory, the longest total motion time is
approximately 5.2 s. The balance compensation calculation used to maintain
dynamic stability takes ca 2.4% of the total motion time using the onboard
computer inside the H7 robot (Pentium III 1.1 GHz). Since the dynamics
computations consume most of the generation time, it is difficult to repeat
dynamically stabilizing calculations during a single cycle. Therefore, additional
constraints are considered by the subsequent two steps, including (i) heuristic
limitations on the parameters that are used for trajectory generation in order to
increase the probability that a realizable dynamically stable trajectory is generated
and (ii) validation that the generated trajectory is indeed a realizable one. Other
constraints and safety checks are performed after the dynamically stable trajectory
generation, including enforcing joint angle and velocity limits, and self-collision
detection. For the latter case, we use a fast distance determination method for
convex polyhedra in order to conservatively guarantee that the trajectory is free of
self-collision (figure 8; Kuffner et al. 2002b). If a trajectory turns out to result in a
self-collidingmotion, the update of the trajectory is abandoned and the robot safely
comes to a halt by executing the rest of the current trajectory.

(e) Modification of the walking trajectory based on sensor feedback

The role of the trajectory modification layer is to compensate for disturbances
caused by modelling errors, or sudden changes in the environment that cannot be
handled by the higher layers. In the case of dynamic stability, if a generated
trajectory is executed ‘open-loop’ without modification, the robot will typically
fall down after several steps due to accumulated errors caused by differences
between the real world and the modelled world. We have developed three control
methods to maintain the dynamic stability of the robot.

—Modification of the horizontal torso position based on the difference between
the measured ZMP and the desired ZMP.

—Compensation for deflection around the roll axis of the hip joints based on the
output of a gyroscope sensor.
Phil. Trans. R. Soc. A (2007)

Figure 10. Simulation and video snapshots of planned full-body trajectories.

–160.5

–93.00

–25.50
0

25.50

93.00

160.5 160.5
(a) (b)

0 1100 3100 4400 6400

y
(m

m
)

time (ms)

–160.5

–93.00

–25.50
0

25.50

93.00

300 2100 4400 6400
time (ms)

measured ZMP
desired ZMP

left foot on the ground
right foot on the ground

Figure 9. Trajectory of the ZMP in the lateral direction. (a) No feedback, (b) with sensor feedback.

89Humanoid robot H7
—Adjusting the joint servo gain according to foot contact timing information in
order to reduce the impact of ground reaction forces and internal forces during
the dual leg support (DLS) phase.

Figure 9 shows the lateral trajectory of the ZMP and contact state of each foot
for four steps of in-place walking. At the start of the motion, the first 300 ms is a
DLS phase, with the next 800 ms, a single leg support phase (SLS). During
continuous walking, the cycle consists of a 200 ms DLS and 800 ms SLS. When
stopping, the robot uses a 300 ms DLS. For this example, the total four-step
walking time is 4400 ms. When the three previously mentioned modification
techniques are applied, the measured ZMP trajectory follows the desired ZMP
trajectory much more closely, and the transitions between contact states are
greatly improved. Several autonomous behaviour experiments using our
complete online walking control system are presented in §5.
4. Automatic motion planning

This section provides an overview of our efforts to develop practical motion
planning methods for humanoid robots for a variety of tasks. Specifically, we have
focused on tasks involving navigation, object grasping and manipulation, footstep
placement and full-body motions (figure 10). In the latter case, we consider the
problem of computing dynamically stable, collision-free trajectories for the entire
Phil. Trans. R. Soc. A (2007)

goal
region

(a) (b)

Figure 11. (a) Humanoid navigating in a cluttered office. (b) Planned footstep locations (top view).

K. Nishiwaki et al.90
body. In the sections that follow, we describe the algorithms developed for each
task and show experimental results obtained by implementations running within a
simulation environment as well as on actual humanoid robot hardware.
(a) Footstep planning

Global path planning and obstacle avoidance strategies for mobile robots and
manipulators have a large and extensive history in the robotics literature (see
Latombe (1991) and Hwang &Ahuja (1992) for an overview of early work). Global
navigation strategies for mobile robots can usually be obtained by searching for a
collision-free path in a two-dimensional environment. Owing to the low
dimensionality of the search space, very efficient and complete (or resolution
complete) algorithms can be employed. For humanoid robots, conservative global
navigation strategies can be obtained by choosing an appropriate bounding
volume (e.g. a cylinder) and designing locomotion gaits for following navigation
trajectories computed by a two-dimensional path planner. However, this always
forces the robot to circumvent obstacles. In contrast, legged robots (including
biped humanoids) have the unique ability to traverse obstacles by stepping over or
upon them. Since reliable walking biped robots have been developed only recently,
much less research attention has been focused on this area.

The goal of footstep planning is to compute a sequence of footstep placements to
navigate to a desired goal location in an obstacle-cluttered environment. Our
approach is to build a search tree from a discrete set of feasible footstep locations
corresponding to available stepping motions (Kuffner et al. 2001; Chestnutt et al.
2003). Using standard dynamic programming techniques, optimal sequences of
footstep placements can be computed according to encoded heuristics that minimize
the number and complexity of the steps taken. Such a strategy can be computed
efficiently on standard PC hardware (under 1 s for simple environments and in a few
seconds for relatively complex, cluttered environments, as shown in figure 11).
(i) Biped navigation model

The biped model comes with a pre-determined set of feasible footstep locations
for each foot. For example, figure 12 shows the continuous feasible footstep range
FRright for the right foot while supported by the left foot, and an example discrete
Phil. Trans. R. Soc. A (2007)

left
foot

FRright

left
foot

(a) (b) (c) initial configuration

2

8

0

5 8 9 12

11 3

710

1

5

4

13

2

6

Figure 12. Reachable placement positions for the right foot (a) continuous region, and (b) discrete
placements. (c) Search tree with pruned successor states (dark grey) that resulted in bad foot
placements or collisions.

91Humanoid robot H7
set of foot placements. For symmetric bipeds, the placements for the left foot can
simply mirror the right-foot placements. In selecting which footstep placements to
include in the discrete set used during the search, we chose a distribution of
placements along the edge of the reachable region at different relative foot angles
as well as a few interior placements to allow the robot to manoeuvre in tight areas.
This choice represents a tradeoff between planning performance and generality.
The goal is to strike a balance between maximizing the navigation options, while
minimizing the total number of discrete placements (the branching factor of the
search tree). In our implementation, we selected a total of 15 placements for each
foot. In addition to the set of footstep placements, the planner also requires a
method to generate dynamically stable motion trajectories for transitioning
between them. These trajectories can be either pre-calculated and stored (Kuffner
et al. 2001) or generated using an online algorithm (Chestnutt et al. 2003).
(ii) Footstep planning algorithm

The planner accepts as input a discrete set of robot footprint locations, a
trajectory generator and a heuristic cost function. Both two- and three-
dimensional representations of the robot and environment model can be used
for collision checking (see Chestnutt et al. 2003). If the planner successfully finds
a solution, it outputs a sequence of encoded footstep placements and transitions.
A forward dynamic programming approach to planning navigation strategies is
adopted, which can also be generalized to classic A* (A-star) search. Since an
exhaustive search is too expensive, we employ a heuristic evaluation function in
order to prune the search tree. Starting from an initial biped configuration Qinit,
a search tree of possible footstep placements is constructed. The planner
maintains a priority queue of search nodes containing footstep placements and
cost values. The cost function L(Q) defines a simple greedy heuristic

LðQÞZwdDðNQÞCwrrðNQÞCwgXðQ;QgÞ:

The first two terms define the cost of the path to configuration Q from Qinit;
D(NQ) is the depth of the node NQ in the tree; and r(NQ) is a function that
encodes the path ‘goodness’, such as favouring ‘safe’ overall foot placements, as
well as paths which incur few orientation changes (for detailed example path
Phil. Trans. R. Soc. A (2007)

Figure 13. Simulation snapshots during execution of footstep plan.

K. Nishiwaki et al.92
metrics, see Chestnutt et al. (2003)). These terms have the combined effect of
favouring paths with fewer steps, as well as slightly favouring paths with long
sequences of straight-line steps. The final term represents an estimated cost from
the current configuration to the goal region. c(Q,Qg) approximates the minimum
number of steps needed to traverse the straight-line distance between the
footprint location at Q and a footprint in the centre of the goal region Qg. Each of
the terms is weighted relative to each other by the factors wd, wr and wg.

Figure 11 shows a cluttered office in which a model of the humanoid robot must
navigate and a top view of a footstep sequence computed to reach a circular goal
region in the centre of the room. There were a total of 15 discrete foot placements
considered for each foot and a total of 20 floor obstacles. The search tree contained
approximately 830 000 nodes. Considering that the number of nodes required for a
brute-force, breadth-first search on a footstep sequence length of 18 steps is more
than 1021, this is quite satisfactory. The path was computed in approximately 4 s
on a 1.6 GHz Pentium4 running LINUX. We used a two-dimensional polygon–
polygon intersection test for the first phase of collision checking, and the (V-clip)
library (see Mirtich 1998) for fast minimum distance determination between the
obstacles and the convex hull of each leg link for the second phase (figure 13).
(b) Object manipulation

Manipulation tasks are specified by identifying a target object to be moved and
its new location. The motion planning software will then attempt to compute three
trajectories: reach, position the robot to grasp the object; transfer, after grasping,
move the object to the target location; and return, once the object has beenplacedat
the target location, release it and return the robot to its rest position. In this case,
the start and the goal are body postures that must be connected by a path in the
configuration space. If a path at each phase is successfully returned by the planner,
the robot executes the motion, possibly guided by visual or force feedback. There
are many potential uses for such software, with the primary one being a high-level
control interface for automatically solving complex object manipulation tasks.

Owing to the complexity of motion planning in its general form (Reif 1979), the
use of complete algorithms is limited to low-dimensional configuration spaces.
Even single-arm manipulation planning (typically 6–7 d.f.s) presents a
computational challenge due to the dimensionality of the search space. Since it
is typically impractical to explicitly represent the configuration space, sampling
techniques are often used in order to discover free configurations and build a data
structure that approximates their connectivity. The problem then becomes how
to design practical and efficient sampling schemes. This has motivated the
Phil. Trans. R. Soc. A (2007)

Figure 14. Manipulation planning simulation environment.

humanoid viewhumanoid view
(a) (b)

Figure 15. (a) Grasping a coffee pot. (b) Answering the telephone.

93Humanoid robot H7
development of numerous planning methods, many of which employ techniques
such as randomization (e.g. Barraquand & Latombe 1990; Kavraki et al. 1996; Hsu
et al. 1997; Mazer et al. 1998; Kuffner & LaValle 2000), lazy evaluation of collision
checking (e.g. Bohlin & Kavraki 2000; Sanchez & Latombe 2002), deterministic
sampling (Branicky et al. 2001) or a combination of techniques. Although these
methods are often heuristic and incomplete, many have been shown to find paths
in high-dimensional configuration spaces with high probability.

We have adopted an efficient general path planning algorithm that is well suited
formanipulation planning. The algorithm,RRT-Connect (Kuffner & LaValle 2000),
was originally developed to plan collision-free motions for animated characters in
three-dimensional virtual environments (Kuffner 1999). It uses a randomized
search strategy based on rapidly exploring random trees (RRTs; LaValle &
Kuffner 1999). Distinguishing features of this algorithm include no pre-processing
of the workspace (ideal for changing environments), greedy behaviour that solves
simple queries very efficiently and uniform coverage of any non-convex space (for
details and analysis, see Kuffner & LaValle (2000)).

Combined with an inverse kinematics algorithm, the planner facilitates a task-
level control mechanism for planning manipulation motions. Through a graphical
user interface, an operator can click and drag an object to a target location and
issue a move command. Figure 14 shows snapshots of a planned motion for a
humanoid repositioning a bottle from the lower shelf to the upper shelf. In the
examples shown in figure 15, the simulated vision module is used in order to verify
that a particular target object is visible to a virtual humanoid prior to attempting
to grasp it. If the object is visible, the manipulation planner is invoked to plan a
collision-free path to grasp the object. If the target object is not visible, the
humanoid will attempt to reposition itself, or initiate a searching behaviour in an
attempt to find the missing object. Additional online experiments using this
manipulation planner with stereo vision output is presented in §5.
Phil. Trans. R. Soc. A (2007)

K. Nishiwaki et al.94
(c) Full-body motions

Automatic, full-body motion planning for humanoid robots presents a
formidable computational challenge due to (i) the high number of degrees of
freedom, (ii) complex kinematic and dynamic models, and (iii) balance
constraints that must be carefully maintained in order to prevent the robot
from falling down. We have developed a version of RRT-Connect that
automatically generates collision-free, dynamically stable motions from full-
body posture goals (Kuffner et al. 2000a). Obstacle and balance constraints are
imposed upon incremental search motions. Provided that the initial and goal
configurations correspond to collision-free, statically stable body postures, the
path returned by the planner can be smoothed and transformed into a collision-
free, dynamically stable trajectory for the entire body.
(i) Robot model and assumptions

An approximate model of the humanoid, including the kinematics and
dynamic properties of the links, is used along with the following assumptions.

(i) Environment model. We assume that the robot has access to a three-
dimensional model of the surrounding environment to be used for collision
checking.

(ii) Initial posture. The robot is currently balanced in a collision-free,
statically stable configuration supported by either one or both feet.

(iii) Goal posture. A full-body goal configuration that is both collision-free and
statically stable is specified. The goal posture may be given explicitly by a
human operator or computed via inverse kinematics or other means.

(iv) Support base. The location of the supporting foot (or feet in the case of
dual-leg support) does not change during the planned motion.
(ii) Full-body trajectory generation

The key idea of the planning algorithm is to search the space of statically
stable configurations (Cstable) for a solution path that also lies within the free
configuration space (Cfree). Each incremental search motion checks balance
constraints while also checking for collisions with obstacles. Rather than picking
a purely random configuration as a target for every planning iteration, we pick
from a pre-generated set of statically stable postures (i.e. qrand2Cstable). For a
more detailed explanation, see Kuffner et al. (2002a).

If successful, the path search phase returns a continuous sequence of collision-free,
statically stable body configurations. All that remains is to calculate a final solution
trajectory t that is dynamically stable and collision free. Theoretically, any given
statically stable trajectory can be transformed into a dynamically stable trajectory
by arbitrarily slowing down the motion. However, we can almost invariably obtain
a smoother and shorter trajectory by performing the following two steps.

(i) Smoothing.We smooth the raw path bymaking several passes along its length,
attempting to replace portions of the path between selected pairs of
configurations by straight-line segments that satisfy both obstacle and
Phil. Trans. R. Soc. A (2007)

(a)

(b)

Figure 16. Dynamically stable motion for retrieving an object. (a) Simulation. (b) Actual hardware.

95Humanoid robot H7
dynamic balance constraints. This step typically eliminates any potentially
unnatural postures along the raw path (e.g. unnecessarily large armmotions).
The resulting smoothed path is transformed into an input trajectory using a
minimum-jerk model (Flash & Hogan 1985).

(ii) Filtering. A dynamics filtering function is used in order to output a final,
dynamically stable trajectory.Weuse the onlinebalance compensation scheme
described in Kagami et al. (2000a), which enforces constraints upon the ZMP
trajectory in order to maintain overall dynamic stability. The output
configuration of the filter is guaranteed to lie in Cstable. Collision checking is
used to verify that the final output trajectory lies in Cfree, with themotionmade
slower in the case of collision.

(iii) Dynamically stable, collision-free motions

We have implemented a prototype planner in CCC that runs within a
graphical simulation environment. An operator can position individual joints or
use inverse kinematics to specify body postures for the virtual robot. The filter
function can be run interactively to ensure that the goal configuration is statically
stable. After specifying the goal, the planner is invoked to attempt to compute a
dynamically stable trajectory connecting the goal configuration to the robot’s
initial configuration (assumed to be a collision-free, stable posture).

We have tested the output trajectories calculated by the planner online.
Figure 16 shows a computed dynamically stablemotion for the robotmoving froma
neutral standing position to a low crouching position in order to retrieve an object
from beneath a chair. Figure 17 shows a motion for positioning the right leg above
the top of a boxwhile balancing on the left leg. Each of the scenes contains over 9000
triangle primitives. The total wall time elapsed in solving these queries ranges from
under 5 s to approximately 1.5 min on a 900 MHz Pentium III running LINUX.
Phil. Trans. R. Soc. A (2007)

(a)

(b)

Figure 17. Placing the right foot above the surface of an obstacle while balancing on the left leg.
(a) Simulation. (b) Actual hardware.

K. Nishiwaki et al.96
5. Autonomous behaviour experiments

(a) Tracking a moving goal with three-dimensional vision

In order to test our online walking control system, we developed a goal tracking
autonomous navigation layer as an example high-level behaviour. The goal
tracking behaviour control consists of three parts.

—Stereo vision processing for target detection and three-dimensional position
estimation in camera coordinates.

—Planning of the desired future torso movements during one step.
—Camera posture and gaze direction control with self-motion compensation.
(i) Visual processing

A stereo camera system mounted on the head is used for tracking a target object
of a known colour that represents the navigation goal location. In our experiments,
we used a red ball to denote the navigation goal. While the robot and the goal are
both moving, colour information from the camera images is used to detect the
relative goal direction. If the target is obscured or outside the viewing area, either
the most recent detected position may be used or the robot may enter a ‘search’
mode to locate and reacquire the target.

We developed a real-time depthmap generation algorithm (Kagami et al. 2000b)
tomeasure the distance to the goal. This method uses four key techniques to achieve
high speed and accuracy: (i) recursive (normalized) correlation, (ii) cache
optimization, (iii) online consistency checking, and (iv) using the MMX/SSE(R)
multimedia instruction set for optimized performance. The final output of this
subcomponent is the three-dimensional position of the target relative to the cameras.
Depthmap generation

The correspondence between every pixel from one image to the other is required
to generate a depthmap. We assume that the epipolar line is horizontal, thus no
Phil. Trans. R. Soc. A (2007)

search areareference area

matching

left image right image

x

(a) (b)

d

D

x0

d0

x

d

Dx0 + d0

CL (x,y,d)

x

d

D

=

CR (x,y,d)

x0 + d0

d’
0

d’
0

Figure 18. Online consistency checking method.

97Humanoid robot H7
vertical disparity occurs for two corresponding image regions. Our system uses the
recursive correlation method (Faugeras et al. 1993) with online consistency
checking (Fua 1991; Bolles & Woodfill 1993). We also employ the following three
key optimizations: (i) second-level CPU cache utilization, (ii) multimedia
instruction set utilization, and (iii) online consistency checking inside recursive
correlation technique. We monitored and tuned the CPU cache performance of our
recursive correlation implementation. Performance was also optimized using the
MMX/SSE/SSE2 multimedia instruction set for the Intel Pentium processor
(Kagami et al. 2000b). These instructions are single instruction multidata (SIMD)
and result in 64/128bit parallel calculations. In particular, normalized correlation
with reciprocal and reciprocal square root instructions can be calculated
approximately five times faster than optimized assembly code generated from
standard C source.
Online consistency checking

Stereo matching suffers fundamentally from occlusion problems. The
correlation calculation computes the best matching region obtained from
candidates. However, a suitable matching region may not be found in the case
of an occlusion or on image regions with a lack of texture or other distin-
guishing features. Thus, noisy or otherwise unreliable matches can result from
correlation. Several methods have been proposed to obtain more reliable
matching. We have adopted a consistency checking method that proceeds as
follows (figure 18a):

(i) a reference region (region A) is selected from the left image, and the
right image is searched for the best matching region (region B),
Phil. Trans. R. Soc. A (2007)

K. Nishiwaki et al.98
(ii) region B is set as the reference region, and the left image is searched in
the same way to select the best matching region (region C), and

(iii) if regions A and C are the same, the matching between A and B is
considered reliable.

This consistency checking method can be implemented inside the inner loops
of the recursive correlation calculation, so that no additional memory is
required. Once the correlation value is calculated locally, the first two steps of
the consistency check can be calculated simultaneously, followed by the third
step that calculates the best match. Figure 18b illustrates the process.

Online experiments

Experimental results have demonstrated that our proposed method can
calculate a 280!200 depthmap at a rate of 30 Hz from 320!240 input images
using the onbody processors of H7. The multimedia instruction set was
implemented on gas-2.9.5, with the CMOS high-resolution stereo cameras
connected to the CPU via IEEE1394. The output accuracy depends on (i) the
lens angle, (ii) the baseline length, (iii) the photosensor size and resolution,
and (iv) the distance to the target. The lens intrinsic parameters were cali-
brated using the improved Tsai method (Tsai 1986) using 500 known points in
the scene.

We examined the output accuracy of the stereo depth calculation from 50 to
250 cm and compared them to ground truth. We determined that the onbody
system implementation accuracy was approximately 1 cm in (i) 808, (ii) 9 cm,
(iii) 14 mm (2/3 inch diagonal), 320 pixel, and (iv) 1 m. This level of accuracy
and calculation time appears to be reasonably sufficient for a human-size
humanoid robot to sense an unknown object shape for online grasping and
manipulation, and for coarse estimation of the terrain geometry for online
navigation and footstep planning.

(ii) Planning of the torso motion vector

When walking, the torso of a biped robot does not only move at the specified
speed and direction. Rather, it may move in any direction at varying speeds
depending upon the compensation motions needed in order to maintain
dynamic stability. Thus, using a local coordinate system fixed to the robot
(such as the torso origin) is inconvenient for planning movement. Instead, we
plan the desired torso motion in world coordinates, which is also convenient for
combining the knowledge of the target motion and any stored map information.

Delays due to vision processing must also be taken into account when
planning torso movements. The delay between image observation time and the
time the target tracking results are available was not negligible in our system.
Experiments have shown this delay to be roughly 270–300 ms, so when
calculating the goal position in world coordinates, we use the approximate
camera position at image capture time (before the start of vision processing) in
order to compensate for the time lag in sensing the target location.

The desired position to which the robot should navigate towards is converted
to a forward distance a and lateral distance b. A continuum of candidate
positions for the robot destination point to reach a fixed distance from the
Phil. Trans. R. Soc. A (2007)

target

a

b

q

f

Pt

Pd

Pc

Figure 19. Determining the desired torso motion.

99Humanoid robot H7
target is shown in figure 19. One destination point is chosen from among the
candidates by calculating the point on the line connecting the target and
the torso position at the end of the currently executing step (�Pc in figure 19).
The desired torso translation for the next single step is given as �PdK �Pc.
However, this translational component of the desired motion vector is then
projected to lie within the realizable region according to the footprint planning
layer. The desired orientation of the torso is expressed as a vertical rotation
angle (j) given by

jZfKkq; k Z j �PtK �Pdj=j �PtK �Pcj:
Here, k is the coefficient used to prevent the robot from rotating too quickly and
moving obliquely when the robot is far from the destination point. The angle j
is also limited to a realizable range by the footprint planning layer.

(iii) Camera posture control

In order to keep the target near the centre of the camera field of view, the
head posture of the robot is adjusted online. The head posture of H7 is
controlled by pan and tilt joints at the neck. In order to compensate for self-
motion, we implemented feed-forward control of the camera gaze direction
towards a fixed point in world coordinates. During walking, this is
accomplished by calculating the torso position resulting from the trajectory
modification layer. The feed-forward control cycle runs at 1 kHz, while the
vision process that updates the desired gaze point runs at approximately 10 Hz.

(iv) Software system

An overview of the software system and components used in the moving
ball target tracking experiment is shown in figure 20. Colour segmentation
Phil. Trans. R. Soc. A (2007)

41 2 3 5

6 7 8 9 10

11 12 13 14 15

Figure 21. Snapshots of H7 tracking and following a moving ball target.

 cam.
image

goal pos.
(global)

footprint
planner

motion
vector

walking pattern
 generator

request footprint

realtime layer
of RT-LINUX

trajectory
manager

request patterns

online
balancer

desired pose
and ZMP

Motor
Servo

goal
angle

goal angle (arms, neck)

current
 angle

control
value

hardware

dynamics
model

and
arm
motion and

torso
posture

torso motion
planner

3D position
calculation

cam
era pos. (global)

gaze pos. (global)

3D vision
processing

 goal pos.
(cam. local)

non-realtime layer

online
walking
control system

cameramotorsensors

measured ZMP, posture

Figure 20. Overview of software components for target tracking while walking.

K. Nishiwaki et al.100
and thresholds were used to detect the direction of a moving pink ball.
Snapshots taken during an example run of the experiment are shown in
figure 21.

Online navigation with footstep planning

In order for bipeds to use their full autonomous navigation capability, dense
three-dimensional surface data are needed in order to facilitate footstep
planning. In this set of experiments, we connected three-dimensional image
sequences to obtain the camera six-dimensional motion and dense three-
dimensional environment terrain information. Our method consists of three key
Phil. Trans. R. Soc. A (2007)

101Humanoid robot H7
components: (i) stereo depthmap computation, (ii) three-dimensional flow
calculation by tracking raw image features, and (iii) 6 d.f. camera motion
estimation by a RANdom SAmpling Consenus (RANSAC). We examined and
evaluated our method in a motion-capture (MOCAP) environment, so that
ground truth data would be available for comparison and evaluation. The
system was implemented and tested onboard the H7 robot and achieved an
approximately 10 Hz cycle time.
(i) Conversion matrix calculation

Assume that the world is rigid and there are no moving objects. If the camera
at time t obtains a depthmap Dt(x, y, z) at coordinates Wt, then the coordinate
conversion matrix Mt

tK1 can be derived using the rotation matrix R and
translation matrix T as follows:

DtK1 ZR$Dt CT : ð5:1Þ
The dimension of the problem is 6 d.f., thus theoretically only three
corresponding points in Dt and DtK1 are required to calculate R and T.
However, there are many errors in both feature tracking and the depthmap
calculation. In order to minimize the error, the following equation is used:

min
Xn

jZ1

kiK1C jKðR$iC j C tÞk2: ð5:2Þ

Here, tC1,., tCn are the feature points in Dt. We adopted the closed form
solution to this problem using a quaternion formulation (Horn 1987).
(ii) Error checking method

There are several possible sources of errors, including (i) stereo depth
calculation and (ii) feature tracking, after calibrating stereo cameras. Since we
assume that world is rigid, any two point sets in time t, tK1 satisfy (figures 22
and 23)

ktCiK
tCjkZ ktK1CiK

tK1Cjk: ð5:3Þ
(iii) Conversion matrix estimation using RANSAC

To minimize the influence of errors and noise, we adopted a RANSAC
method to estimate Mt

tK1. From among N features, we select n features, estimate
Mt

tK1 and calculate the remaining error E using the obtained matrix. This
procedure is iterated for a number of times and the best Mt

tK1 that yields the
minimum error is selected.

Figure 22 shows some example experimental results. Figure 22a shows the
raw three-dimensional flow obtained. Long lines indicate failed feature tracking
results. Figure 22b shows a least squares-based result for determining a
conversion matrix Mt

tK1, and the remaining error is indicated by grey lines.
Figure 22c shows the result after omitting features that do not satisfy rigid
body transformation error. Finally, figure 22d shows the result using RANSAC,
illustrating the relatively small amount of remaining error.
Phil. Trans. R. Soc. A (2007)

input image sequences

raw 3D flow

(a) (b)

(c) (d)

squares estimation

least squares with
rigid transform check

RANSAC of
rigid transform check

Figure 22. Three-dimensional motion estimation and error.

K. Nishiwaki et al.102
(iv) Error minimization in local frames

Global error minimization is expensive and impractical, given the current
computing resources. However, if only two consecutive frames are used, small
errors quickly accumulate and the obtained three-dimensional map becomes
inaccurate and unusable for robot navigation. Thus, we conducted experiments
using a local minimization method.

At the feature tracking stage, we attempt to maintain tracking unless (i) the
correlation error value becomes too large or (ii) the rigid body assumption is
not satisfied. We obtain the resulting series of feature points (tKn)Ci, (tKnC
1)Ci, ., (t)Ci. Then, we can compute the relative transformation matrix
between two non-adjacent frames and compare the error terms E to determine
which matrix will be used. An example of a three-dimensional scene recovery
experiment is shown in figure 24.
(v) Online mapping and footstep planning

We examined the integrated system onboard the humanoid robot H7.
Figure 25 shows the experimental setup and robot motion and generated three-
dimensional map. In the final stage, the complete three-dimensional map is
projected down to a 2.5D height map and footsteps from the current robot
Phil. Trans. R. Soc. A (2007)

(a)

(b)

(c)

(d)

Figure 24. Three-dimensional scene recovery experiment. (a) Raw input images. (b) KLT tracking
feature points. (c) One-shot 3D scene from depth map with texture mapping. (d) Resulting

3D scene with estimated camera motion.

right imageleft image

Pt–1 (x,y,z)

Pt (x,y,z)disparity : uLpt – uRpt

optical flow : (uRpt – uRpt–1, u
Rpt – uRpt–1)

3D flow : Pt (x,y,z) – Pt–1(x,y,z)

(uLpt , v
Lpt) (uRpt , v

Rpt)

(uLpt–1 , v
Lpt–1) (uRpt–1 , v

Rpt–1)

d (Pt)

d (Pt–1) f (Pt)

Figure 23. Three-dimensional flow calculation.

103Humanoid robot H7

Phil. Trans. R. Soc. A (2007)

Figure 25. H7 Online mapping and footstep planning.

K. Nishiwaki et al.104
position to the given goal location are planned. Figure 25 shows the robot
avoiding a previously unknown obstacle and reaching to the goal location.
Vision-based object manipulation

In order to use depthmap output for object grasping tasks, accurate and
high-speed, dense three-dimensional environment data are required. Let us
assume an arm length and hand proportion of a human-size humanoid robot to
be approximately 60 and 15 cm, respectively. We considered object grasping
tasks that can be accomplished with 1 cm accuracy at 1 m distance at a rate of
10 Hz.

Stereo methods have a reciprocal relationship between distance and resolution.
Therefore, results obtained by moving cameras at different distances cannot be
directly merged. Using a volumetric representation, the world is discretized into a
voxel grid fromwhich surfacemeshes are extracted.We adopted theMarching Cubes
algorithm (Lorensen&Cline 1987) in order to generate volumetricmeshmodels. The
mesh vertices are restricted to lie on grid edges, and each vertex has an associated
scalar value that has positive sign when it is outside the adjacent surface and negative
sign when it is inside. If the states of adjacent vertices are opposite, the surface of the
object intersects the edge between them. We calculate the signed distance of each
voxel to the nearest surface along the view line (Curless & Levoy 1996). We
accumulate this model incrementally and probabilistically, and obtain an integrated
world model (Sagawa et al. 2000). In our experiments, a 2 cm voxel size was used.

Let vjj(1!j!8) denote a voxel vertex and Z(vj) denote the signed distance of
that vertex to the surface. When Z(vj)j(1!i!M,1!j!8 is computed for a M
depthmaps, with a weighted average of these signed distances as the result of
merging M range images to calculate the final signed distance V(v) given by

V ðvÞZ
X

i

wiðvÞZiðvÞ: ð5:4Þ

Here, w is a probabilistic weighting value reciprocal to the distance from the
camera to the surface, since the accuracy is inversely proportional to distance.
Phil. Trans. R. Soc. A (2007)

Figure 26. Three-dimensional vision-based arm motion planning.

105Humanoid robot H7
Incremental updates to the mesh model V(v) are given by following equations:

VM ðvÞZWMK1ðvÞVMK1ðvÞCwM ðvÞZM ðvÞ
WMK1ðvÞCwM ðvÞ ; ð5:5Þ

WM ðvÞZWMK1ðvÞCwM ðvÞ:
Here, WM(v) denotes the mesh model size.

(i) Online humanoid arm motion planning

Finally, we show results obtained using our complete integrated vision-
based environment modelling and RRT-based path planning modules used for
online arm trajectory planning for grasping objects of known geometry in
unknown environments.

Figure 26 illustrates the robot geometry with respect to the obtained
environmental mesh model. In this experiment, the target object (bottle) shape
is known a priori and an operator must designate the goal object. The vision
system yielded a model with approximately 1 cm accuracy. Figure 27 shows the
resulting planned bottle-grasping motion for the arm. Although, this example
was executed open-loop, H7 was still able to successfully grasp the bottle. The
total average calculation time for this problem took approximately 1 s using the
onbody processor (minimum 0.3 s, maximum 18.2 s).
6. Summary and discussion

As humanoid robotics technology enters mainstream society during the next several
decades, safe operation and autonomy will be of highest importance. The
development of general-purpose autonomous humanoid robots represents a very
challenging research area, with exciting potential.We have presented an overview of
the hardware and software design of our autonomous humanoid research platform
H7. We selected standard hardware (PC/AT) and software (RT-LINUX OS)
components in our design to facilitate easy research and development. We also
Phil. Trans. R. Soc. A (2007)

Figure 27. H7 grasping a bottle.

K. Nishiwaki et al.106
introduce a layered control architecture for developing and integrating complex
high-level behaviour controllers with online walking trajectory generation for
autonomous locomotion. We have given a brief overview of some our efforts to
develop practical motion planning software for humanoids performing a variety of
tasks. Using a graphical simulation environment, sophisticated motion generation
algorithms can be efficiently developed and debugged, reducing the costs and safety
risks involved in testing software for humanoid robots. Furthermore, we hope that
through open designs such as those we have developed with H7, the current and the
future capabilities of humanoid and other complex robotic systems can be improved.

This research was supported in part by the Japan Society for the Promotion of Science (JSPS) Grant-
in-Aid for Research for the Future (JSPS-RFTF96P00801), JSPSGrants-in-Aid for ScientificResearch
(13355011) and a JSPS Postdoctoral Fellowship for Foreign Scholars in Science and Engineering.
References

Barabanov, M. 1997 A linux-based real-time operating system, Master’s thesis, New Mexico
Institute of Mining and Technology, Socorro, NM.

Barraquand, J. & Latombe, J.-C. 1990 Robot motion planning: a distributed representation
approach. Int. J. Robot. Res. 10, 628–649.

Bohlin, R. & Kavraki, L. 2000 Path planning using lazy PRM. In Proc. IEEE Int. Conf. Robot. &
Autom. (ICRA).

Bolles, R. & Woodfill, J. 1993 Spatiotemporal consistency checking of passive renge data. In
Robotics research: the Sixth Int. Symp. International Foundation for Robotics Research (ed.
T. Kanade & R. Paul).

Branicky, M. S., LaValle, S. M., Olson, K. & Yang, L. 2001 Quasi-randomized path planning. In
Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).

Chestnutt, J., Kuffner, J., Nishiwaki K. & Kagami S. 2003 Planning biped navigation strategies
in complex environments. In Proc. IEEE Int. Conf. on Humanoid Robotics (Humanoids’03).

Curless, B. & Levoy, M. 1996 A volumetric method for building complex models from range images. In
Computer Graphics (SIGGRAPH ’96 Proceedings). 30 (Annual Conference Series), pp. 303–312.

Faugeras, O. et al. 1993 Real time correlation-based stereo: algorithm, implementations and
applications. Technical Report N 8 2013, INRIA.

Flash, T. & Hogan, N. 1985 The coordination of arm movements: an experimentally confirmed
mathematical model. J. Neurosci. 5, 1688–1703.

Fua, P. 1991 A parallel stereo algorithm that produces dense depth maps and preserves images
features. Machine Vis. Appl. 6, 35–49. (doi:10.1007/BF01212430)
Phil. Trans. R. Soc. A (2007)

http://dx.doi.org/doi:10.1007/BF01212430

107Humanoid robot H7
Horn, B. K. P. 1987 Closed-form solution of absolute orientation using unit quaternions. Opt.
Soc. Am. A 4, 629.

Hsu, D., Latombe, J.-C. & Motwani, R. 1997 Path planning in expansive configuration spaces.
Int. J. Comput. Geomet, Appl. 9, 495–512. (doi:10.1142/S0218195999000285)

Hwang, Y. K. & Ahuja, N. 1992 A potential field approach to path planning. IEEE Trans. Robot
Autom. 8, 23–32. (doi:10.1109/70.127236)

Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M. & Inoue, H. 2000a. AutoBalancer: an online dynamic
balance compensation scheme for humanoid robots. In Proc. Int. Workshop Alg. Found.
Robot.(WAFR).

Kagami, S., Okada, K., Inaba, M. & Inoue, H. 2000b. Design and implementation of onbody real-time
depthmap generation system. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), pp. 1441–1446.

Kavraki, L., Švestka, P., Latombe, J. C. & Overmars, M. H. 1996 Probabilistic roadmaps for
path planning in high-dimensional configuration space. IEEE Trans. Robot. Autom. 12,
566–580. (doi:10.1109/70.508439)

Kuffner, J. 1999 Autonomous agents for real-time animation, Ph.D. thesis, Stanford University,
Stanford, CA.

Kuffner, J. & LaValle, S. 2000 RRT-connect: an efficient approach to single-query path planning.
In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M. & Inoue, H. 2001. Footstep planning among
obstacles for biped robots. In Proc. IEEE/RSJ Int. Conf. Intelligent Robot. & Sys. (IROS).

Kuffner, J.,Kagami, S., Nishiwaki,K., Inaba,M.& Inoue,H. 2002aDynamically-stablemotion planning
for humanoid robots. Autonomous Robots (special issue on Humanoid Robotics) 12, 105–118.

Kuffner, J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. & Inoue, H. 2002b. Self-collision
detection and prevention for humanoid robots. In Proc. IEEE Int. Conf. Robot. & Autom.
(ICRA), pp. 2265–2270.

Latombe, J. C. 1991 Robot motion planning. Boston, MA: Kluwer Academic Publishers.
LaValle, S. & Kuffner, J. 1999 Randomized kinodynamic planning. In Proc. IEEE Int. Conf.

Robot. & Autom. (ICRA).
Lorensen,W. E. &Cline, E. 1987Marching cubes: a high resolution 3D surface construction algorithm.

In Computer Graphics (SIGGRAPH ’87 Proceedings) 21 (Annual Conference Series), pp. 163–169.
Matsui, T. & Inaba, M. 1990 EusLisp: an object-based implementation of Lisp. J. Inf. Process. 13,

327–338.
Mazer, E., Ahuactzin, J. M. & Bessière, P. 1998 The Ariadne’s clew algorithm. J. Artif. Intell.

Res. 9, 295–316.
Mirtich, B. 1998 VClip: fast and robust polyhedral collision detection. ACM Trans. Graph. 17,

177–208. (doi:10.1145/285857.285860)
Nishiwaki, K., Murakami, Y., Kagami, S., Kuniyoshi, Y., Inaba, M. & Inoue, H. 2002 A six-axis

force sensor with parallel support mechanism to measure the ground reaction force of
humanoid robot. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), pp. 2277–2282.

Nishiwaki, K., Sugihara, T., Kagami, S., Kanehiro, F., Inaba, M. & Inoue, H. 2000 Design and
development of research platform for perception-action integration in humanoid robot: H6. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robot. & Sys. (IROS), vol. 1, pp. 88–95.

Reif, J. H. 1979 Complexity of the mover’s problem and generalizations. In Proc. 20th IEEE
Symp. on Foundations of Computer Science (FOCS), pp. 421–427.

Sagawa, R., Okada, K., Kagami, S., Inaba, M. & Inoue, H. 2000 Incremental mesh modeling and
hierarchical object recognition using multiple range images. In Proc. IEEE/RSJ Int. Conf.
Intelligent Robot. & Sys. (IROS), vol. 1, pp. 88–95.

Sanchez, G. & Latombe, J. 2002 On delaying collision checking in prm planning—application to
multi-robot coordination. Int. J. Robot. Res. 21, 5–26. (doi:10.1177/027836402320556458)

Tsai, R. Y. 1986 An efficient and accurate camera calibration technique for 3D machine vision. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 364–374.
Phil. Trans. R. Soc. A (2007)

http://dx.doi.org/doi:10.1142/S0218195999000285
http://dx.doi.org/doi:10.1109/70.127236
http://dx.doi.org/doi:10.1109/70.508439
http://dx.doi.org/doi:10.1145/285857.285860
http://dx.doi.org/doi:10.1177/027836402320556458

	The experimental humanoid robot H7: a research platform for autonomous behaviour
	Introduction
	Hardware design and software architecture
	Specifications
	Software architecture

	Online walking control system
	Layered control approach
	Gait and footstep location selection
	Generating dynamically stable walking trajectories
	Online walking trajectory generation
	Modification of the walking trajectory based on sensor feedback

	Automatic motion planning
	Footstep planning
	Object manipulation
	Full-body motions

	Autonomous behaviour experiments
	Tracking a moving goal with three-dimensional vision

	Summary and discussion
	This research was supported in part by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Research for the Future (JSPS-RFTF96P00801), JSPS Grants-in-Aid for Scientific Research (13355011) and a JSPS Postdoctoral Fellowship for Fore...
	References

