
Dynamically-stable Motion Planning for Humanoid Robots

James Kuffner, Jr., Satoshi Kagami, Masayuki Inaba, and Hirochika Inoue

Dept. of Mechano-Informatics, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 JAPAN

{kuffner,kagami,inaba,inoue}@jsk.t.u-tokyo.ac.jp
http://www.jsk.t.u-tokyo.ac.jp/˜kuffner/humanoid/

Proceedings of Humanoids 2000: First RAS/IEEE Int’l Conf. on Humanoid Robots

Abstract. We present an algorithm for computing stable collision-free motions for humanoid robots given full-
body posture goals. The motion planner is part of a simulation environment under development for providing
high-level software control for humanoid robots. Given a robot’s internal model of the environment and a
statically-stable desired posture, we use a randomized path planner to search the configuration space of the robot
for a collision-free path. Balance constraints are imposed on incremental search motions in order to maintain
the overall dynamic stability of the computed trajectories. The algorithm is presented along with preliminary
results using an experimental implementation on a dynamic model of the H5 humanoid robot.

1 Introduction

Research involving humanoid robots has increased during recent years. Advances in computing hardware and
software have enabled the implementation of sophisticated motion control strategies. In particular, dynamic sim-
ulation software [WO82, Bar89, Mir96] has assisted in the realization of dynamic walking in several humanoid
robots [Hir97, YINT98, NII99].

As the technology and algorithms for real-time 3D vision and tactile sensing improve, humanoid robots will
be able to perform tasks that involve complex interactions with the environment (e.g. grasping and manipulating
objects). The enabling software for such tasks includes motion planning for obstacle avoidance, and integrating
planning with visual and tactile sensing data.

To facilitate the deployment of such software, we are currently developing a graphical simulation environment
for the H5 dynamic humanoid robot [KKII00]. The project builds upon a software framework that was originally
developed for the high-level control of computer animated characters in 3D virtual environments[Kuf99]. The
software automatically computes object grasping and manipulation trajectories through a combination of inverse
kinematics and randomized holonomic path planning. Feasible kinematic trajectories can be computed at interac-
tive rates for single-arm reaching and object manipulation tasks.

The algorithm described in this paper represents our first attempt at automatically generating collision-free
dynamically-stable motions from full-body posture goals. Our approach is to adapt techniques from an existing,
successful path planner [KL00] by transforming incremental motions used during the search by a filter function
that maintains dynamic balance constraints [KKT+00]. Provided the initial and goal configurations correspond
to statically-stable body postures, the path returned by the planner can be transformed into a collision-free and
dynamically-stable trajectory for the entire body.

Although the current implementation of the planner is limited to body posture goals, and a fixed position
for either one or both feet, research is underway to extend the method to handle more complex body posture

HUMANOID VIEW

Fig. 1. The virtual and real dynamic humanoid ’H5’ (left), and answering the phone in a simulated world (right).

repositioning. It is our hope that through the use of such kinds of task-level planning algorithms and interactive
simulation software, the current and future capabilities of humanoid and other complex robotic systems can be
improved.

2 Background

Motion planning problems typically involve searching the system configuration space of one or more complicated
geometric bodies for a collision-free path that connects a given start and goal configuration amidst environment ob-
stacles. Complete algorithms exist for the general class of problems [SS83, Can88, HP00], but their computational
complexity limits their use to low-dimensional configuration spaces.

This limitation, lower-bound hardness results [Rei79], and strong motivation to handle practical planning prob-
lems have stimulated the development and success of many path planning methods that use randomization (e.g.,
[BL90, Ove92, Sve93, CG93, KL93, HST94, KKKL94, HLM97, AW96, KŠLO96, BKL+97, MAB98, BOvdS99,
KL00]). The accepted tradeoff is that the methods are incomplete, but will find a solution with any probability
given sufficient running time. The goal is to develop randomized methods that converge quickly in practice, yet are
simple enough to yield consistent behavior and analysis.

Due to the curse of dimensionality, developing practical motion planning algorithms for humanoid robots is
a daunting task. Humanoid robots such as H5 (Figure 1) have 30 or more degrees of freedom. The problem is
further complicated by the fact that humanoid robots must be controlled very carefully in order to maintain overall
static and dynamic stability. These constraints severely restrict the set of allowable configurations and prohibit
the direct application of existing randomized path planning techniques. Although efficient techniques have been
developed for maintaining dynamic balance for biped robots [Rai86, VBSS90, PP99, KKT+00], none consider
obstacle avoidance.

Recently, randomized motion planning algorithms that account for system dynamics have been developed for
2D and 3D rigid bodies with state spaces of up to twelve dimensions [LK99, LK00], for a 3D helicopter model
[FDF99], and for a circular disc in 2D among circular moving obstacles [KHLR00]. These methods have yet
to be applied to complex articulated models such as humanoid robots. It has been suggested to limit the active
body degrees of freedom for humanoid robot path planning and balance control, though these ideas are still under
development [Hir00].

Our approach is to adapt a variation of the randomized planner described in [KL00] to compute full-body
motions for humanoid robots that are both dynamically-stable and collision-free. This planner (RRT-Connect) and
its variants utilize Rapidly-exploring Random Trees (RRTs) [LaV98] combined with a simple greedy heuristic that
aggressively tries to connect two search trees, one from the initial configuration and the other from the goal. These
methods have been shown to be efficient in practice and converge towards a uniform exploration of the search
space.

3 Robot Model and Assumptions

We have based our experiments on an approximate model of the H5 dynamic humanoid robot, including the
kinematics and dynamic properties of the links (see Figure 1). The model of the link dynamics was successfully
used to generate dynamically-stable stepping motions [NII99], and for online balance compensation [KKT+00].
Along with the existence of the dynamic model of the humanoid robot, we make the following assumptions:

1. We assume that the robot has access to a 3D model of the surrounding environment to be used for collision
checking. For implementation on a real robot platform, an approximate model can be acquired using stereo
vision or other means. In this case, the model need not be exact, provided that a conservative model of sensing
error is taken into account by the planner to avoid potential collisions with obstacles.

2. The robot is currently balanced in a statically-stable posture supported by either one or both feet.

3. The location of the supporting foot or feet (in the case of dual-leg support) does not change during the planned
motion.

4. The robot is given a full-body goal posture that is statically-stable. The goal posture may be set explicitly by a
human operator, or computed via inverse kinematics or other means (e.g. for reaching a limb towards a target
location or object).

4 Problem Formulation

To make things more precise, we now give a more formal formulation of the stable-posture motion planning
problem for humanoid robots. The notation adopted here is loosely based on the conventions used in [Lat91],
which are often used in the robotics and motion planning literature.

1. The robot is called A.

2. The 3D environment (workspace) in which the robot moves is denoted by W , and is modeled as the Euclidean
space �3 (� is the set of real numbers).

3. A is a collection of p links Li (i = 1, . . . , p) organized in a kinematic hierarchy with Cartesian frames Fi

attached to each link. We denote the position of the center of mass ci of link Li relative to Fi.

4. A configuration or pose of the robot is denoted by the set P = {T1, T2, . . . , Tp}, of p relative transformations
for each of the links Li as defined by the frame Fi relative to its parent link’s frame. The base or root link
transformation T1 is defined relative to some world Cartesian frame Fworld.

5. Let n denote the number of generalized coordinates or degrees of freedom (DOFs) of A. Note that n is in
general not equal to p.

6. A configuration is denoted by q ∈ C, a vector of n real numbers specifying values for each of the generalized
coordinates of A.

7. Let C be the configuration space or C-space of A. C is a space of dimension n.

8. Let FORWARD(q) be a forward kinematics function mapping values of q to a particular pose P . FORWARD(q)
can be used to compute the global transformation Gi of a given link frame Fi relative to the world frame
Fworld.

9. The set of obstacles in the environment W is denoted by B, where Bk (k = 1, 2, . . .) represents an individual
obstacle.

10. We define the C-obstacle region CB ⊂ C as the set of all configurations q ∈ C where one or more of the links
of A intersect (are in collision) with another link of A, any of the obstacles Bk. We also regard configurations
q ∈ C where one or more joint limits are violated as part of the C-obstacle region CB.

11. The open subset C \ CB is denoted by Cfree and its closure by cl(Cfree), and it represents the space of
collision-free configurations in C of the robot A.

12. Let X (q) be a vector relative to Fworld representing the global position of the center of mass of A while in the
configuration q.

13. A configuration q is statically-stable if the projection of X (q) along the gravity vector g lies within the area of
support SP (i.e. the convex hull of all points of contact between A and the support surface in W).

14. Let Cstable ⊂ C be the subset of statically-stable configurations of A.

15. Let Cvalid = Cstable∩Cfree denote the subset of configurations that are both collision-free and statically-stable
postures of the robot A. Cvalid is called the set of valid configurations.

16. Let τ : I �→ C where I is an interval [t0, t1], denote a motion trajectory or path for A expressed as a function
of time. τ(t) represents the configuration q of A at time t, where t ∈ I.

17. A trajectory τ is said to be collision-free if τ(t) ∈ Cfree for all t ∈ I.

18. A trajectory τ is said to be both collision-free and statically-stable if τ(t) ∈ Cvalid for all t ∈ I.

Given qinit ∈ Cvalid and qinit ∈ Cvalid, we wish to compute a continuous motion trajectory τ such that ∀t ∈
[t0, t1], τ(t) ∈ Cvalid, and τ(t0) = qinit and τ(t1) = qgoal. We refer to such a trajectory as a statically-stable
trajectory.

Any statically-stable trajectory can be transformed into a dynamically-stable trajectory by arbitrarily slow-
ing down the motion. For these experiments, we utilize the online balance compensation scheme described in

[KKT+00] as a method of generating a final dynamically-stable trajectory.The details of this technique are not
described in this paper. Other methods of generating dynamically-stable trajectories from a given input motion are
also potentially possible to apply here [Hir97, YINT98, YN00].

4.1 Planning Query

Note that in general, if a dynamically-stable solution trajectory exists for a given path planning query, there will
be many such solution trajectories. Let Φ denote the set of all dynamically-stable solution trajectories for a given
problem. A planning query is given as follows:

Planner(A,B, qinit, qgoal) −→ τ (1)

Given a model of the robot A, obstacles in the environment B, and an initial and goal posture, the planner returns a
solution trajectory τ ∈ Φ. Currently, we require the planning software to compute only one solution. If the planner
fails to find a solution, τ will be empty (a null trajectory).

5 Path Search

Unfortunately, there are no currently known methods for explicitly representing Cvalid. The obstacles are modeled
completely in W , thus an explicit representation of Cfree is also not available. However, using a collision detection
algorithm, a given q ∈ C can be tested to determine whether q ∈ Cfree. Testing whether q ∈ Cstable can also be
checked by computing X (q) and verifying that its projection along g is contained within the boundary of SP .

5.1 Distance Metric

As with the most planning algorithms in high-dimensions, a metric ρ is defined on C. The function ρ(q, r) returns
some measure of the distance between the pair of configurations q and r). Some axes in C may be weighted relative
to each other, but the general idea is to measure the “closeness” of pairs of configurations with a scalar function.

For the H5 humanoid, we use a metric that assigns higher relative weights to the generalized coordinates of
links with greater mass and proximity to the trunk (torso):

ρ(q, r) =
n∑

i=1

wi|qi − ri| (2)

This choice of metric function attempts to heuristically encode a general relative measure of how much the variation
of an individual joint parameter affects the overall body posture. Additional experimentation is needed in order to
evaluate the efficacy of the many different metric functions possible.

5.2 Modified RRT-Connect

The Rapidly-exploring Random Tree (RRT) was introduced in [LaV98] as an efficient data structure and sampling
scheme to quickly search high-dimensional spaces that have both algebraic constraints (arising from obstacles) and
differential constraints (arising from nonholonomy and dynamics). The key idea is to bias the exploration toward
unexplored portions of the space (an objective also shared by the planners in [HLM97] and [MAB98]).

In [LK99] an RRT-based approach to path planning was presented that generated and connected two RRTs in a
state space, which generalizes C. A holonomic variant of this planner that adds a greedy heuristic to guide searches
that can be conducted in C was presented in [KL00]. For implementation details and analysis of these algorithms,
the reader is referred to the original papers or a summary in [LK00].

The planner described in this paper is similar to the method in [KL00] in that it performs its search in C.
However, it uses a balance compensation method to enforce dynamic constraints imposed upon the ZMP (zero
moment point) trajectory [KKT+00].

In particular, we modify the planner variant that employs symmetric calls to the EXTEND function as follows:

1. The NEW CONFIG function in the EXTEND operation first generates a target configuration qtarget by mak-
ing an incremental step motion towards q from qnear as before. However, qnew is generated by filtering the
straight-line path connecting qnear and qtarget through the dynamic balance compensator. This creates an in-
cremental dynamically-stable trajectory from qnear towards qtarget. The filter simulation terminates when the

configuration converges or after a preset time limit is exceeded. If no collision occurs prior to termination, the
most recent configuration output by the filter becomes qnew and is added to the tree T . In this way, we are
guaranteed that qnew ∈ Cvalid.

2. Rather than picking a purely random configuration qrand ∈ C at every planning iteration, we pick a random
configuration that also happens to correspond to a statically-stable posture of the robot (i.e. qrand ∈ Cstable).

A diagram depicting the modified EXTEND operation is given in Figure 2. Pseudocode for the complete modified
RRT CONNECT STABLE algorithm is given in Figure 3. The main planning loop involves performing a simple
iteration in which each step attempts to extend the RRT by adding a new vertex that is biased by a randomly-
selected stable configuration.

EXTEND selects the nearest vertex already in the RRT to the given sample configuration, q. The function
NEW CONFIG makes a dynamically-stable motion toward q as outlined previously using some fixed incremental
distance ε to generate qtarget. Three situations can occur: Reached, in which q is directly added to the RRT,
Advanced, in which a new vertex qnew �= q is added to the RRT; Trapped, in which no new vertex is added due to
the inability of the balance compensator to generate an incremental trajectory that lies in Cvalid.

qinit

qnear

qnew

qtarget

q

ε

Fig. 2. The modified EXTEND operation.

EXTEND(T , q)
1 qnear ← NEAREST NEIGHBOR(q, T);
2 if NEW CONFIG(q, qnear, qnew) then
3 T .add vertex(qnew);
4 T .add edge(qnear, qnew);
5 if qnew = q then
6 Return Reached;
7 else
8 Return Advanced;
9 Return Trapped;

RRT CONNECT STABLE(qinit, qgoal)
1 Ta.init(qinit); Tb.init(qgoal);
2 for k = 1 to K do
3 qrand ← RANDOM STABLE CONFIG();
4 if not (EXTEND(Ta, qrand) =Trapped) then
5 if (EXTEND(Tb, qnew) =Reached) then
6 Return PATH(Ta, Tb);
7 SWAP(Ta, Tb);
8 Return Failure

Fig. 3. The modified RRT-Connect algorithm for generating dynamically-stable motions.

One of the key differences between RRT CONNECT STABLE and the classic RRT-Connect is that instead of
uniformly sampling C and growing trees that lie entirely in Cfree, it attempts to uniformly sample Cstable and grow
trees that lie within Cvalid.

5.3 Convergence and Completeness

Although not proven here, it is expected that arguments similar to those given in [KL00, LK00] could potentially
be constructed to show uniform coverage and convergence over Cvalid, provided that appropriate convergence and
performance guarantees can be derived for the balance compensation filter.

Ideally, we would like to build a complete planning algorithm. That is, the planner always returns a solution
trajectory if one exists, and indicates failure if no solution exists. As mentioned in Section 2, implementing a
practical complete planner is a daunting task for even low-dimensional configuration spaces (see [HP00]). Thus,
we typically trade off completeness for practical performance by adopting heuristics (e.g. randomization).

The planning algorithm implemented here is incomplete in that it returns failure after a preset time limit is
exceeded. Thus, if the planner returns failure, we cannot conclude whether or not a solution exists for the given
planning query, only that our planner was unable to find one in the allotted time. Uniform coverage and convergence
proofs, though only theoretical, at least help to provide some measure of confidence that when an algorithm fails
to find a solution, it is likely that no solution exists. This is an area of ongoing research.

6 Random Statically-stable Postures

For our algorithm to work, we require a method of generating random statically-stable postures (i.e. random point
samples of Cstable). Although it is trivial to generate random configurations in C, it is not so easy to generate them
in Cstable, since it encompasses a much smaller subset of the configuration space.

In our current implementation, a set Qstable ⊂ Cstable of N samples of Cstable is generated as a preprocessing
step. This computation is specific to a particular robot and support-leg configuration, and need only be performed
once. The collection of stable postures is saved to a file and loaded into memory when the planner is initialized1.

A sample series of dual-leg and single-leg stable postures for the H5 humanoid robot are shown in Figure 4
(perspective view), Figure 5 (front view), and Figure 6 (left view).

However, we currently restrict the set of samples q ∈ Qstable to belong to a unique dual-leg support posture at
a fixed relative foot location. We hope to ultimately incorporate single-leg postures, multiple relative positions for
dual-leg postures, and identify appropriate transitions between them in future implementations. For the rest of this
discussion, we will assume that Qstable contains only dual-leg support postures at a fixed relative position for the
feet; specifically, statically-stable body configurations supported by both feet planted parallel and shoulder-width
apart.

Populating Qstable is very similar to the problem of sampling the configuration space of a constrained closed-
chain system (e.g. closed-chain manipulator robots or molecular conformations [LYK99, HA00]). We employ
similar techniques here.

The set Qstable is populated with these fixed-position dual-leg support postures as follows:

1. The configuration space of the robot C is sampled by generating a random body configuration qrand ∈ C. qrand

can include either random or fixed positions for the arm and head joints. Although fixed positions for these
limbs slightly decreases the full generality of the planner by reducing the set of possible full-body motions to
be used for obstacle avoidance, the tradeoff in planning efficency can be worthwhile. Since the arms and head
of the H5 robot have a relatively small mass, their joint variables are currently fixed at a canonical rest position
in our current implementation.

2. Holding the right leg fixed at its random configuration, inverse kinematics is used to attempt to position the
other foot at the required relative position to generate the body configuration qright. If it succeeds, then qright

is tested for membership in Cvalid (i.e. static stability and no self-collision).

3. An identical procedure is performed to generate qleft by holding the left leg fixed at its random configuration
derived from qrand, using inverse kinematics to position the right leg, and testing for membership in Cvalid.

1 Since the H5 humanoid has 30 DOF, storing a 4-byte float for each joint variable corresponds to roughly 1.2MB of storage
per N = 10, 000 sample configurations. However, this memory usage can be significantly reduced by adopting fixed-point
representations for the joint variables. This has not implemented in our current planner.

4. If either qright ∈ Cvalid or qleft ∈ Cvalid, we employ the following trick to effectively double the samples
discovered: since most humanoid robots have left-right symmetry, additional stable postures can be derived by
mirroring the generated stable configurations.

Although stable configurations could be generated “on-the-fly” at the same time the planner performs the search,
pre-calculating Qstable is preferred for efficiency. After pre-generating the set Qstable, the results are saved to a
file for instant retrieval the next time the planner is initialized. In addition, multiple stable-configuration set files
can be saved independently. If the planner fails to find a path after a certain number of samples have been removed
from the currently active Qstable set, a new one can be loaded with different samples.

Fig. 4. Dual-leg and single-leg stable postures for the H5 humanoid robot (perspective view).

7 Experiments

This section presents some preliminary experiments performed on a 270 MHz SGI O2 (R12000) workstation.
We have implemented a prototype planner that runs within a graphical simulation environment. An operator can
position individual joints or use inverse kinematics to specify body postures for the virtual robot. The filter function
can be run interactively to ensure that the goal configuration is statically-stable. After specifying the goal, the
planner is invoked to attempt to compute a dynamically-stable trajectory connecting the goal configuration to the
robot’s initial configuration (assumed to be a stable posture).

This section presents some preliminary experiments performed on a 270 MHz SGI O2 (R12000) workstation.
We have implemented a prototype planner that runs within a graphical simulation environment using a dynamic
model of the H5 humanoid robot (30-DOF). Through a graphical user interface, an operator can position individual
joints or use inverse kinematics to specify body postures. The filter function can be run interactively to ensure that
the goal configuration is statically-stable.

After specifying the goal, the planner is invoked to attempt to compute a dynamically-stable trajectory con-
necting the goal configuration to the robot’s initial configuration (assumed to be a stable posture).

Figure 7 shows a computed dynamically-stable motion for the H5 robot moving from a neutral standing position
to a low crouching posture.

.

.

.

Fig. 5. Dual-leg and single-leg stable postures for the H5 humanoid robot (front view).

Fig. 6. Dual-leg and single-leg stable postures for the H5 humanoid robot (left view).

Fig. 7. Dynamically-stable planned trajectory for a crouching motion.

This scene contains over 11,300 triangle primitives. The 3D collision checking software used for these ex-
periments was the RAPID library based on OBB-Trees developed by the University of North Carolina[GLM96].
Since we used a non-incremental 3D collision checking algorithm, performance could potentially be improved
significantly by using an alternate algorithm (for example [LC91, Mir97, GHZ99]).

The total wall time elapsed in solving these queries ranges from approximately 3 to 12 minutes. A summary of
the computation times for repeated runs of 100 trials is shown in Table 1.

Task Description Computation Time (seconds)

min max avg stdev

Crouch near table 176 620 304 133

Table 1. Performance statistics (N = 100 trials).

8 Discussion

This paper presents an algorithm for computing dynamically-stable collision-free motions for humanoid robots
given full-body posture goals. Balance constraints are imposed upon incremental search motions computed by a
randomized planner in order to maintain the overall dynamic stability of the computed trajectories.

There are many potential uses for such software, with the primary one being a high-level control interface for
automatically solving complex tasks for humanoid robots that involve simultaneous obstacle-avoidance and overall
dynamic stability.

By using a graphical simulation environment, sophisticated motion generation algorithms can be efficiently
developed and debugged, reducing the costs and safety risks involved in testing software for humanoid robots.

We are aware of several current limitations in our current algorithm and implementation that forms the basis
for future research:

1. The locations of the body supports (the foot positions) are currently fixed.

2. Efficient nearest-neighbor techniques [AMN+98, IM98] can be used to reduce computation time for n sample
points from the obvious O(n) algorithm to near-logarithmic time.

3. Incremental collision-detection software can be used to improve the collision-checking performance (e.g. [LC91,
Mir97, GHZ99]).

4. Additional examples need to be tested and analyzed to obtain a better profile of the planner and potential
bottlenecks.

5. Analysis of the coverage of Cvalid and rates of convergence needs to be investigated, including a clearer
understanding of how the filter function may or may not affect convergence.

6. The effectiveness of different configuration space distance metrics needs to be investigated.

7. We currently have no method for integrating visual or tactile feedback.

Acknowledgments

Many thanks to Fumio Kanehiro for his help in debugging and integrating the AutoBalancer software library. We
also thank Koichi Nishiwaki for helping with the H5 model, and Yukiharu Tamiya, one of the original authors of
the AutoBalancer software. We are grateful to Steven LaValle, David Hsu, Lydia Kavraki, Nancy Amato and Jean-
Claude Latombe, with whom many discussions regarding path planning helped form a foundation for this work.
This research is supported in part by a Japan Society for the Promotion of Science Postdoctoral Fellowship for
Foreign Scholars in Science and Engineering. Many thanks to the Stanford University Dept. of Computer Science,
where the initial development of portions of the simulation software was conducted.

References

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching. Journal of the ACM, 45:891–923, 1998.

[AW96] N. Amato and Y. Wu. A randomized roadmap method for path and manipuation planning. In Proc. of IEEE Int.
Conf. Robotics and Automation, pages 113–120, Minneapolis, MN, 1996.

[Bar89] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid bodies. In Proc. SIGGRAPH ’89,
pages 223–231, 1989.

[BKL+97] J. Barraquand, L.E. Kavraki, J.C. Latombe, T.Y. Li, R. Motwani, and P. Raghavan. A random sampling scheme
for path planning. Int. J. Robot. Res., 16(6):759–774, 1997.

[BL90] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation approach. Int. J. Robot.
Res., 10(6):628–649, December 1990.

[BOvdS99] V. Boor, M. Overmars, and A.F. van der Stappen. The gaussian sampling strategy for probabilistic roadmap
planners. In Proc. of IEEE Int. Conf. Robotics and Automation, Detroit, MI, 1999.

[Can88] J.F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.
[CG93] D. Chalou and M. Gini. Parallel robot motion planning. In Proc. of IEEE Int. Conf. Robotics and Automation,

pages 24–51, Atlanta, GA, 1993.
[FDF99] E. Frazzoli, M.A. Dahleh, and E. Feron. Robust hybrid control for autonomous vehicles motion planning. Techni-

cal report, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA, 1999. Technical report LIDS-P-2468.

[GHZ99] L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance computation for moving convex bodies. In
Proc. ACM Symposium on Computational Geometry, pages 265–273, 1999.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical structure for rapid interference detection. In
SIGGRAPH ’96 Proc., 1996.

[HA00] Li Han and Nancy M. Amato. A kinematics-based probabilistic roadmap method for closed chain systems. In In
Proc. of Workshop on Algorithmic Foundations of Robotics (WAFR’00). A. K. Peters, March 2000.

[Hir97] Kazuo Hirai. Current and future perspective of honda humanoid robot. In In Proc. of 1997 IEEE/RSJ Int. conf.
on Intelligent Robots and Systems (IROS’97), pages 500–508, 1997.

[Hir00] H. Hirukawa. Motion planning algorithm of a arm of a humanoid robot, 2000. Personal communication.
[HLM97] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. Int. J. of Computational

Geometry and Applications, 9(4-5):495–512, 1997.
[HP00] H. Hirukawa and Y. Papegay. Motion planning of objects in contact by the silhouette algorithm. In IEEE Int.

Conf. Robot. & Autom., pages 722–729, April 2000.
[HST94] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom : Random reflections at

c-space obstacles. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA’94), pages 3318–3323, San
Diego, CA, April 1994.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In
Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998.

[KHLR00] R. Kindel, D. Hsu, J.C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles. In IEEE
Int. Conf. Robot. & Autom., April 2000.

[KKII00] J.J. Kuffner, S. Kagami, M. Inaba, and H. Inoue. Simulating high-level robot behaviors. In In Proc. of RSJ 5th
Annual Robotics Symposium of Japan, March 2000.

[KKKL94] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with intentions. In Proc. SIGGRAPH ’94,
pages 395–408, 1994.

[KKT+00] S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue. Autobalancer: An online dynamic balance com-
pensation scheme for humanoid robots. In Robotics: The Algorithmic Perspective, Workshop on Algorithmic
Foundations of Robotics. A K Peters, Hanover, NH, March 2000.

[KL93] L.E. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration space for fast path planning. Tech-
nical report, Dept. of Computer Science, Stanford University, September 1993.

[KL00] J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach to single-query path planning. In In Proc.
IEEE Int’l Conf. on Robotics and Automation (ICRA’2000), San Francisco, CA, April 2000.

[KŠLO96] L. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-
dimensional configuration space. IEEE Trans. Robot. & Autom., 12(4):566–580, 1996.

[Kuf99] J.J. Kuffner Jr. Autonomous Agents for Real-time Animation. PhD thesis, Stanford University, 1999.
[Lat91] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.
[LaV98] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. TR 98-11, Computer Science

Dept., Iowa State Univ. <http://janowiec.cs.iastate.edu/papers/rrt.ps>, Oct. 1998.
[LC91] M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance computation. In IEEE Int. Conf. Robot.

& Autom., 1991.
[LK99] S.M. LaValle and J.J Kuffner. Randomized kinodynamic planning. In Proc. IEEE Int’l Conf. on Robotics and

Automation (ICRA’99), Detroit, MI, May 1999.
[LK00] S.M. LaValle and J.J Kuffner. Rapidly-exploring random trees: Progress and prospects. In Proc. 2000 Workshop

on the Algorithmic Foundations of Robotics., Hanover, NH, March 2000.
[LYK99] S.M. LaValle, J.H. Yakey, and L.E. Kavraki. A probabilistic roadmap approach for systems with closed kinematic

chains. In IEEE Int. Conf. Robot. & Autom., 1999.
[MAB98] E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm. J. Artificial Intell. Res., 9:295–316,

November 1998.
[Mir96] B. Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Systems. PhD thesis, University of California,

Berkeley, CA, 1996.
[Mir97] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical Report TR97-05, Mitsubishi Elec-

tronics Research Laboratory, 1997.
[NII99] K. Nagasaka, M. Inaba, and H. Inoue. Walking pattern generation for a humanoid robot based on optimal gradient

method. In In Proc. of 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics, 1999.
[Ove92] M. Overmars. A random approach to motion planning. Technical report, Dept. Computer Science, Utrect Uni-

versity, Utrect, The Netherlands, October 1992.
[PP99] J. Pratt and G. Pratt. Exploiting natural dynamics in the control of a 3d bipedal walking simulation. In In Proc.

of Int. Conf. on Climbing and Walking Robots (CLAWAR99), Portsmouth, UK, September 1999.
[Rai86] Marc Raibert. Legged Robots that Balance. MIT Press, Cambridge, MA, 1986.
[Rei79] J. H. Reif. Complexity of the mover’s problem and generalizations. In Proc. 20th IEEE Symp. on Foundations

of Computer Science (FOCS), pages 421–427, 1979.
[SS83] J. T. Schwartz and M. Sharir. On the ‘piano movers’ problem: Ii. general techniques for computing topological

properties of real algebraic manifolds. Advances in applied Mathematics, 4:298–351, 1983.
[Sve93] P. Svestka. A probabilistic approcach to motion planning for car-like robots. Technical report, Dept. Computer

Science, Utrect Univ., Utrect, The Netherlands, April 1993.
[VBSS90] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokie. Biped Locomotion: Dynamics, Stability, Control, and

Applications. Springer-Verlag, Berlin, 1990.
[WO82] M.W. Walker and D.E. Orin. Efficient dynamic computer simulation of robotic mechanisms. ASME J. of Dynamic

Systems, Measurement, Control, 104:205–211, 1982.
[YINT98] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi. Development of a bipedal humanoid robot having antago-

nistic driven joints and three dof trunk. In In Proc of 1998 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’98), pages 96–101, 1998.

[YN00] K. Yamane and Y. Nakamura. Dynamics filter - concept and implementation of on-line motion generator for
human figures. In IEEE Int. Conf. Robot. & Autom., April 2000.

